

## Ball mill power demand

The approximate power demand of a ball mill can be obtained by the formula of Blanc.

- P mill power demand KW
- c index relating to grinding balls and mill charge
- G total grinding ball load (metric t)
- D inside mill diameter (m)

## Index c-values (Blanc's formular)

| Grinding media               | Degree of grinding media load |      |      |      |     |
|------------------------------|-------------------------------|------|------|------|-----|
|                              | 0.1                           | 0.2  | 0.3  | 0.4  | 0.5 |
| Large steel balls (> 60 mm)  | 11.9                          | 11.0 | 9.9  | 8.5  | 7.0 |
| Small steel balls (< 60 mm)  | 11.5                          | 10.6 | 9.5  | 8.2  | 6.8 |
| Cylpebs                      | 11.1                          | 10.2 | 9.2  | 8.0  | 6.0 |
| Steel grinding media average | 11.5                          | 10.6 | 9.53 | 8.23 | 6.8 |

As a link to our Homepage we provide a Grinding Media Enquiry Sheet. By completing the details and transmitting to us, we will calculate the correct media size for your mills.

 $P = \frac{c \cdot G \cdot \sqrt{D}}{1,3596}$  (KW)